

1. NAME OF THE FINISHED PHARMACEUTICAL PRODUCT

ML Gacid (Omeprazole Capsules 20 mg)

2. QUALITATIVE AND QUANTITATIVE COMPOSITION:

Label Claim:

Each hard gelatin capsule contains: 20 mg omeprazole (as enteric coated granules)

Excipient(s) with known effect:

For the full list of excipients, see section 6.1.

3. PHARMACEUTICAL FORM:

Pink and transparent size 3 hard gelatin capsules containing off white coloured pallets.

4. CLINICAL PARTICULARS

4.1 Therapeutic indications

Omeprazole is indicated for:

Adults

- > Treatment of duodenal ulcers
- Prevention of relapse of duodenal ulcers
- > Treatment of gastric ulcers
- > Prevention of relapse of gastric ulcers
- ➤ In combination with appropriate antibiotics, Helicobacter pylori (H. pylori) eradication in peptic ulcer disease
- > Treatment of NSAID-associated gastric and duodenal ulcers
- > Prevention of NSAID-associated gastric and duodenal ulcers in patients at risk
- > Treatment of reflux esophagitis
- ➤ Long-term management of patients with healed reflux esophagitis
- > Treatment of symptomatic gastro-oesophageal reflux disease
- ➤ Treatment of Zollinger-Ellison syndrome

Paediatric use

Children over 1 year of age and \geq 10 kg

- > Treatment of reflux esophagitis
- > Symptomatic treatment of heartburn and acid regurgitation in gastro-oesophageal reflux disease Children and adolescents over 4 years of age
- > In combination with antibiotics in treatment of duodenal ulcer caused by H. pylori

4.2 Posology and method of administration

The capsule must be kept intact and swallowed whole.

Duodenal ulcers

20 mg once daily for 2 to 4 weeks.

In some Duodenal ulcers patients, refractory to other treatment regimens, 40 mg once daily may be effective.

The usual maintenance dose is 10 to 20 mg once daily.

In demonstrated Helicobacter pylori, the concomitant use of omeprazole and suitable antibiotic may be beneficial.

Gastric Ulcer and Reflux Oesophagitis

A dose of 20mg once daily for 4 to 8 weeks is recommended.

In some patient with gastric ulcers or reflux oesophagitis refractory to other treatment regimens, ML GACID once daily may be effective. In some patients with severe or symptomatic recurrent reflux oesophagitis treatment can be continued with ML GACID at a dose of 20 mg once a daily.

Zollinger–Ellisone Syndrome

An initial dosage of 60mg once daily is recommended. The dosage should be adjusted to individual requirements of each patient and treatment continued as long as is clinically required.

More than 90% of patient with severe disease have been maintained ondaily doses of 20mg to 120mg. if doses required are higher than 80mg daily, It should be divided into twice daily regimens.

Paediatrics

The safety and efficacy of omeprazole in children has not been established.

Elderly

No dose adjustment is required in patient with reduced renal function.

Impaired Hepatic Function

Due to an increase in the bioavailability plasma half-life of omeprazole in patients with impaired hepatic function a daily dose of 20mg is generally adequate.

The long term safety of omeprazole in patients with renal and hepatic impairment has not been established.

4.3 Contraindications:

Hypersensitivity to the active substance(s), substituted benzimidazoles or to any of the excipients listed in section 6.1. Omeprazole like other proton pump inhibitors (PPIs) must not be used concomitantly with nelfinavir (see section 4.5).

4.4 Special warnings and precautions for use:

In the presence of any alarm symptom (e.g. significant unintentional weight loss, recurrent vomiting, dysphagia, haematemesis or melena) and when gastric ulcer is suspected or present, malignancy should be excluded, as treatment may alleviate symptoms and delay diagnosis.

Co-administration of atazanavir with proton pump inhibitors is not recommended (see section 4.5). If the combination of atazanavir with a proton pump inhibitor is judged unavoidable, close clinical monitoring (e.g virus load) is recommended in combination with an increase in the dose of atazanavir to 400 mg with 100 mg of ritonavir; omeprazole 20 mg should not be exceeded.

Omeprazole, as all acid-blocking medicines, may reduce the absorption of vitamin B12 (cyanocobalamin) due to hypo- or achlorhydria. This should be considered in patients with reduced body stores or risk factors for reduced vitamin B12 absorption on long-term therapy. Omeprazole is a CYP2C19 inhibitor. When starting or ending treatment with omeprazole, the potential for interactions with drugs metabolised through CYP2C19 should be considered. An interaction is observed between clopidogrel and omeprazole (see section 4.5). The clinical relevance of this interaction is uncertain. As a precaution, concomitant use of omeprazole and clopidogrel should be discouraged.

Severe hypomagnesaemia has been reported in patients treated with proton pump inhibitors (PPIs) like omeprazole for at least three months, and in most cases for a year. Serious manifestations of hypomagnesaemia such as fatigue, tetany, delirium, convulsions, dizziness and ventricular arrhythmia can occur but they may begin insidiously and be overlooked. In most affected patients, hypomagnesaemia improved after magnesium replacement and discontinuation of the PPI.

For patients expected to be on prolonged treatment or who take PPIs with digoxin or drugs that may cause hypomagnesaemia (e.g. diuretics), healthcare professionals should consider measuring magnesium levels before starting PPI treatment and periodically during treatment. Severe cutaneous adverse reactions (SCARs) including Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN), drug reaction with eosinophilia and systemic symptoms (DRESS) and acute generalized exanthematouspustulosis (AGEP), which can be life-

threatening or fatal, have been reported very rarely and rarely, respectively in association with omeprazole treatment.

Proton pump inhibitors, especially if used in high doses and over long durations (>1 year), may modestly increase the risk of hip, wrist and spine fracture, predominantly in the elderly or in presence of other recognised risk factors. Observational studies suggest that proton pump inhibitors may increase the overall risk of fracture by 10-40%. Some of this increase may be due to other risk factors.

Patients at risk of osteoporosis should receive care according to current clinical guidelines and they should have an adequate intake of vitamin D and calcium.

Subacute cutaneous lupus erythematosus (SCLE)

Proton pump inhibitors are associated with very infrequent cases of SCLE. If lesions occur, especially in sun-exposed areas of the skin, and if accompanied by arthralgia, the patient should seek medical help promptly and the health care professional should consider stopping. SCLE after previous treatment with a proton pump inhibitor may increase the risk of SCLE with other proton pump inhibitors.

Renal impairment

Acute tubulointerstitial nephritis (TIN) has been observed in patients taking omeprazole and may occur at any point during omeprazole therapy (see section 4.8). Acute tubulointerstitial nephritis can progress to renal failure.

Omeprazole should be discontinued in case of suspected TIN, and appropriate treatment should be promptly initiated.

Interference with laboratory tests

Increased Chromogranin A (CgA) level may interfere with investigations for neuroendocrine tumours. To avoid this interference, Omeprazole treatment should be stopped for at least 5 days before CgA measurements (see section 5.1). If CgA and gastrin levels have not returned to reference range after initial measurement, measurements should be repeated 14 days after cessation of proton pump inhibitor treatment.

Some children with chronic illnesses may require long-term treatment although it is not recommended.

Omeprazole contains sucrose. Patients with rare hereditary problems of fructose intolerance, glucose-galactose malabsorption or sucrase-isomaltase insufficiency should not take this medicine.

Treatment with proton pump inhibitors may lead to slightly increased risk of gastrointestinal infections such as Salmonella and Campylobacter and, in hospitalised patients, possibly also Clostridium difficile (see section 5.1).

As in all long-term treatments, especially when exceeding a treatment period of 1 year, patients should be kept under regular surveillance.

4.5 Interaction with other medicinal products and other forms of interaction:

Effects of omeprazole on the pharmacokinetics of other active substances

Active substances with pH dependent absorption

The decreased intragastric acidity during treatment with omeprazole might increase or decrease the absorption of active substances with a gastric pH dependent absorption.

Nelfinavir, atazanavir

The plasma levels of nelfinavir and atazanavir are decreased in case of co-administration with omeprazole.

Concomitant administration of omeprazole with nelfinavir is contraindicated (see section 4.3). Co-administration of omeprazole (40 mg once daily) reduced mean nelfinavir exposure by ca. 40% and the mean exposure of the pharmacologically active metabolite M8 was reduced by ca. 75 –90%. The interaction may also involve CYP2C19 inhibition.

Concomitant administration of omeprazole with atazanavir is not recommended (see section 4.4).

Concomitant administration of omeprazole (40 mg once daily) and atazanavir 300 mg/ritonavir 100 mg to healthy volunteers resulted in a 75% decrease of the atazanavir exposure. Increasing the atazanavir dose to 400 mg did not compensate for the impact of omeprazole on atazanavir exposure. The co-administration of omeprazole (20 mg once daily) with atazanavir 400 mg/ritonavir 100 mg to healthy volunteers resulted in a decrease of approximately 30% in the atazanavir exposure as compared to atazanavir 300 mg/ritonavir 100 mg once daily.

Digoxin

Concomitant treatment with omeprazole (20 mg daily) and digoxin in healthy subjects increased the bioavailability of digoxin by 10%. Digoxin toxicity has been rarely reported. However caution should be exercised when omeprazole is given at high doses in elderly patients. Therapeutic drug monitoring of digoxin should be then be reinforced.

Clopidogrel

Results from studies in healthy subjects have shown a pharmacokinetic (PK)/pharmacodynamic (PD) interaction between clopidogrel (300 mg loading dose/75 mg daily maintenance dose) and omeprazole (80 mg p.o. daily) resulting in a decreased exposure to the active metabolite of clopidogrel by an average of 46% and a decreased maximum inhibition of (ADP induced) platelet aggregation by an average of 16%.

Inconsistent data on the clinical implications of a PK/PD interaction of omeprazole in terms of major cardiovascular events have been reported from both observational and clinical studies. As a precaution, concomitant use of omeprazoleandclopidogrel should be discouraged (see section 4.4).

Other active substances

The absorption of posaconazole, erlotinib, ketoconazole and itraconazole is significantly reduced and thus clinical efficacy may be impaired. For posaconazole and erlotinib concomitant use should be avoided.

Active substances metabolised by CYP2C19

Omeprazole is a moderate inhibitor of CYP2C19, the major omeprazole metabolising enzyme. Thus, the metabolism of concomitant active substances also metabolised by CYP2C19, may be decreased and the systemic exposure to these substances increased. Examples of such drugs are R-warfarin and other vitamin K antagonists, cilostazol, diazepam and phenytoin.

<u>Cilostazol</u>

Omeprazole, given in doses of 40 mg to healthy subjects in a cross-over study, increased Cmax and AUC for cilostazol by 18% and 26% respectively, and one of its active metabolites by 29% and 69% respectively.

Phenytoin

Monitoring phenytoin plasma concentration is recommended during the first two weeks after initiating omeprazole treatment and, if a phenytoin dose adjustment is made, monitoring and a further dose adjustment should occur upon ending omeprazole treatment.

<u>Unknown mechanism</u>

Saquinavir

Concomitant administration of omeprazole with saquinavir/ritonavir resulted in increased plasma levels up to approximately 70% for saquinavir associated with good tolerability in HIV-infected patients.

Tacrolimus

Concomitant administration of omeprazole has been reported to increase the serum levels of tacrolimus. A reinforced monitoring of tacrolimus concentrations as well as renal function (creatinine clearance) should be performed, and dosage of tacrolimus adjusted if needed.

Methotrexate

When given together with proton-pump inhibitors, methotrexate levels have been reported to increase in some patients. In high-dose methotrexate administration a temporary withdrawal of omeprazole may need to be considered.

Effects of other active substances on the pharmacokinetics of omeprazole

Inhibitors of CYP2C19 and/or CYP3A4

Since omeprazole is metabolised by CYP2C19 and CYP3A4, active substances known to inhibit CYP2C19 or CYP3A4 (such as clarithromycin and voriconazole) may lead to increased omeprazole serum levels by decreasing omeprazole's rate of metabolism. Concomitant voriconazole treatment resulted in more than doubling of the omeprazole exposure. As high doses of omeprazole have been well-tolerated adjustment of the omeprazole dose is not generally required. However, dose adjustment should be considered in patients with severe hepatic impairment and if long-term treatment is indicated.

Inducers of CYP2C19 and/or CYP3A4

Active substances known to induce CYP2C19 or CYP3A4 or both (such as rifampicin and St John's wort) may lead to decreased omeprazole serum levels by increasing omeprazole's rate of metabolism.

4.6 Fertility, Pregnancy and lactation

<u>Pregnancy</u>

Results from three prospective epidemiological studies (more than 1000 exposed outcomes) indicate no adverse effects of omeprazole on pregnancy or on the health of the foetus/newborn child. Omeprazole can be used during pregnancy.

Breastfeeding

Omeprazole is excreted in breast milk but is not likely to influence the child when therapeutic doses are used.

Fertility

Animal studies with the racemic mixture omeprazole, given by oral administration do not indicate effects with respect to fertility.

4.7 Effects on ability to drive and use machines

Omeprazole is not likely to affect the ability to drive or use machines. Adverse drug reactions such as dizziness and visual disturbances may occur (see section 4.8). If affected, patients should not drive or operate machinery.

4.8 Undesirable effects

Summary of the safety profile

The most common side effects (1-10% of patients) are headache, abdominal pain, constipation, diarrhoea, flatulence and nausea/vomiting.

Severe cutaneous adverse reactions (SCARs), including Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN), drug reaction with eosinophilia and systemic symptoms (DRESS) and acute generalized exanthematouspustulosis (AGEP) have been reported in association with omeprazole treatment (see section 4.4).

Tabulated list of adverse reactions

The following adverse drug reactions have been identified or suspected in the clinical trials programme for omeprazole and post-marketing. None was found to be dose-related.

Adverse reactions listed below are classified according to frequency and System Organ Class (SOC). Frequency categories are defined according to the following convention: Very common ($\geq 1/10$), Common ($\geq 1/100$ to < 1/10), Uncommon ($\geq 1/1,000$ to < 1/1,000), Rare ($\geq 1/10,000$) to < 1/1,000), Very rare (< 1/10,000), Not known (cannot be estimated from the available data).

SOC/frequency	Adverse reaction	
Blood and lymphatic system disorders		
Rare:	Leukopenia, thrombocytopenia	
Very rare:	Agranulocytosis, pancytopenia	
Immune system disorders		
Rare:	Hyponatraemia	
Not known:	Hypomagnesaemia; severe hypomagnesaemia	
	may result in hypocalcaemia. Hypomagnesaemia	
	may also be associated with hypokalaemia.	
Psychiatric disorders		
Uncommon:	Insomnia	
Rare:	Agitation, confusion, depression	
Very rare:	Aggression, hallucinations	

Nervous system disorders		
Common	Headache	
Uncommon:	Uncommon:	
Rare:	Taste disturbance	
Eye disorders		
Rare:	Blurred vision	
Ear and labyrinth disorders		
Uncommon:	Vertigo	
Respiratory, thoracic and mediastinal disorders		
Rare:	Bronchospasm	
Gastrointestinal disorders		
Common:	Abdominal pain, constipation, diarrhoea,	
	flatulence, nausea/vomiting, fundic gland polyps	
	(benign)	
Rare:	Dry mouth, stomatitis, gastrointestinal	
	candidiasis	
Not known:	Microscopic colitis	
Hepatobiliary disorders		
Uncommon:	Increased liver enzymes	
Rare:	Hepatitis with or without jaundice	
Very rare:	Hepatic failure, encephalopathy in patients with	
	pre-existing liver disease	
Skin and subcutaneous tissue disorders		
Uncommon:	Dermatitis, pruritus, rash, urticaria	
Rare:	Alopecia, photosensitivity, acute generalized	
	exanthematouspustulosis (AGEP), drug reaction	
	with eosinophilia and systemic symptoms	
	(DRESS)	
Very rare:	Erythema multiforme, Stevens-Johnson	
	syndrome, toxic epidermal necrolysis (TEN)	
Not known:	Subacute cutaneous lupus erythematosus (see	
	section 4.4).	
Musculoskeletal and connective tissue disorders		

Uncommon:	Fracture of the hip, wrist or spine	
Rare:	Arthralgia, myalgia	
Very rare:	Muscular weakness	
Renal and urinary disorders		
Rare:	Tubulointerstitial nephritis (with possible	
	progression to renal failure)	
Reproductive system and breast disorders		
Very rare:	Gynaecomastia	
General disorders and administration site conditions		
Uncommon:	Malaise, peripheral oedema	
Rare:	Increased sweating	

Paediatric population

The safety of omeprazole has been assessed in a total of 310 children aged 0 to 16 years with acid-related disease. There are limited long term safety data from 46 children who received maintenance therapy of omeprazole during a clinical study for severe erosive esophagitis for up to 749 days. The adverse event profile was generally the same as for adults in short- as well as in long-term treatment. There are no long term data regarding the effects of omeprazole treatment on puberty and growth.

Reporting of suspected adverse reactions

Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product..

4.9 Overdose

There is limited information available on the effects of overdoses of omeprazole in humans. In the literature, doses of up to 560 mg have been described, and occasional reports have been received when single oral doses have reached up to 2,400 mg omeprazole (120 times the usual recommended clinical dose). Nausea, vomiting, dizziness, abdominal pain, diarrhoea and headache have been reported. Also apathy, depression and confusion have been described in single cases.

Symptoms

The symptoms described have been transient, and no serious outcome has been reported. The rate of elimination was unchanged (first order kinetics) with increased doses.

Treatment

Treatment, if needed, is symptomatic.

5. PHARMACOLOGICAL PROPERTIES

5.1 Pharmacodynamics Properties

Pharmacotherapeutic group: Drugs for acid-related disorders, proton pump inhibitors

ATC code: A02BC01

Mechanism of action

Omeprazole, a racemic mixture of two enantiomers reduces gastric acid secretion through a highly targeted mechanism of action. It is a specific inhibitor of the acid pump in the parietal cell. It is rapidly acting and provides control through reversible inhibition of gastric acid secretion with once daily dosing. Omeprazole is a weak base and is concentrated and converted to the active form in the highly acidic environment of the intracellular canaliculi within the parietal cell, where it inhibits the enzyme H+K + -ATPase - the acid pump. This effect on the final step of the gastric acid formation process is dose-dependent and provides for highly effective inhibition of both basal acid secretion and stimulated acid secretion, irrespective of stimulus.

Pharmacodynamic effects

All pharmacodynamic effects observed can be explained by the effect of omeprazole on acid secretion.

Effect on gastric acid secretion

Oral dosing with omeprazole once daily provides for rapid and effective inhibition of daytime and nighttime gastric acid secretion with maximum effect being achieved within 4 days of treatment. With omeprazole 20 mg, a mean decrease of at least 80% in 24-hour intragastric acidity is then maintained in duodenal ulcer patients, with the mean decrease in peak acid output after pentagastrin stimulation being about 70% 24 hours after dosing.

Oral dosing with omeprazole 20 mg maintains an intragastric pH of \geq 3 for a mean time of 17 hours of the 24-hour period in duodenal ulcer patients.

As a consequence of reduced acid secretion and intragastric acidity, omeprazole dosedependently reduces/normalizes acid exposure of the esophagus in patients with gastrooesophageal reflux disease.

The inhibition of acid secretion is related to the area under the plasma concentration-time curve (AUC) of omeprazole and not to the actual plasma concentration at a given time.

No tachyphylaxis has been observed during treatment with omeprazole.

Effect on H. pylori

H. pylori is associated with peptic ulcer disease, including duodenal and gastric ulcer disease. H. pylori is a major factor in the development of gastritis. H. pylori together with gastric acid are major factors in the development of peptic ulcer disease. H. pylori is a major factor in the development of atrophic gastritis which is associated with an increased risk of developing gastric cancer.

Eradication of H. pylori with omeprazole and antimicrobials is associated with, high rates of healing and long-term remission of peptic ulcers.

Dual therapies have been tested and found to be less effective than triple therapies. They could, however, be considered in cases where known hypersensitivity precludes use of any triple combination.

Other effects related to acid inhibition

During long-term treatment gastric glandular cysts have been reported in a somewhat increased frequency. These changes are a physiological consequence of pronounced inhibition of acid secretion, are benign and appear to be reversible.

Decreased gastric acidity due to any means including proton pump inhibitors, increases gastric counts of bacteria normally present in the gastrointestinal tract. Treatment with acid-reducing drugs may lead to slightly increased risk of gastrointestinal infections such as Salmonella and Campylobacter and, in hospitalised patients, possibly also Clostridium difficile.

During treatment with antisecretory medicinal products, serum gastrin increases in response to the decreased acid secretion. Also CgA increases due to decreased gastric acidity. The increased CgA level may interfere with investigations for neuroendocrine tumours.

Available published evidence suggests that proton pump inhibitors should be discontinued between 5 days and 2 weeks prior to CgA measurements. This is to allow CgA levels that might be spuriously elevated following PPI treatment to return to reference range.

An increased number of ECL cells possibly related to the increased serum gastrin levels, have been observed in some patients (both children and adults) during long term treatment with omeprazole. The findings are considered to be of no clinical significance.

Paediatric population

In a non-controlled study in children (1 to 16 years of age) with severe reflux esophagitis, omeprazole at doses of 0.7 to 1.4 mg/kg improved esophagitis level in 90% of the cases and significantly reduced reflux symptoms. In a single-blind study, children aged 0–24 months with clinically diagnosed gastro-oesophageal reflux disease were treated with 0.5, 1.0 or 1.5 mg omeprazole/kg. The frequency of vomiting/regurgitation episodes decreased by 50% after 8 weeks of treatment irrespective of the dose.

Eradication of H. pylori in children

A randomised, double blind clinical study (Héliot study) concluded that omeprazole in combination with two antibiotics (amoxicillin and clarithromycin), was safe and effective in the treatment of H. pylori infection in children age 4 years old and above with gastritis: H. pylori eradication rate: 74.2% (23/31 patients) with omeprazole + amoxicillin + clarithromycin versus 9.4% (3/32 patients) with amoxicillin + clarithromycin. However, there was no evidence of any clinical benefit with respect to dyspeptic symptoms. This study does not support any information for children aged less than 4 years.

5.2 Pharmacokinetic properties

Absorption

Omeprazole and omeprazole magnesium are acid labile and are therefore administered orally as enteric-coated granules in capsules or tablets. Absorption of omeprazole is rapid, with peak plasma levels occurring approximately 1-2 hours after dose. Absorption of omeprazole takes place in the small intestine and is usually completed within 3-6 hours. Concomitant intake of food has no influence on the bioavailability. The systemic availability (bioavailability) from a single oral dose of omeprazole is approximately 40%. After repeated once-daily administration, the bioavailability increases to about 60%.

Distribution

The apparent volume of distribution in healthy subjects is approximately 0.3 l/kg body weight. Omeprazole is 97% plasma protein bound.

Biotransformation

Omeprazole is completely metabolised by the cytochrome P450 system (CYP). The major part of its metabolism is dependent on the polymorphically expressed CYP2C19, responsible for the formation of hydroxyomeprazole, the major metabolite in plasma. The remaining part is dependent on another specific isoform, CYP3A4, responsible for the formation of omeprazole sulphone. As a consequence of high affinity of omeprazole to CYP2C19, there is a potential for competitive inhibition and metabolic drug-drug interactions with other substrates for CYP2C19. However, due to low affinity to CYP3A4, omeprazole has no potential to inhibit the metabolism of other CYP3A4 substrates. In addition, omeprazole lacks an inhibitory effect on the main CYP enzymes.

Approximately 3% of the Caucasian population and 15-20% of Asian populations lack a functional CYP2C19 enzyme and are called poor metabolisers. In such individuals the metabolism of omeprazole is probably mainly catalysed by CYP3A4. After repeated oncedaily administration of 20 mg omeprazole, the mean AUC was 5 to 10 times higher in poor metabolisers than in subjects having a functional CYP2C19 enzyme (extensive metabolisers). Mean peak plasma concentrations were also higher, by 3 to 5 times. These findings have no implications for the posology of omeprazole.

Elimination

The plasma elimination half-life of omeprazole is usually shorter than one hour both after single and repeated oral once daily dosing. Omeprazole is completely eliminated from plasma between doses with no tendency for accumulation during once-daily administration. Almost 80% of an oral dose of omeprazole is excreted as metabolites in the urine, the remainder in the faeces, primarily originating from bile secretion.

Linearity/non-linearity

The AUC of omeprazole increases with repeated administration. This increase is dose-dependent and results in a nonlinear dose-AUC relationship after repeated administration. This time- and dose-dependency is due to a decrease of first pass metabolism and systemic clearance probably caused by an inhibition of the CYP2C19 enzyme by omeprazole and/or its metabolites (e.g. the sulphone). No metabolite has been found to have any effect on gastric acid secretion.

Special population

Hepatic impairment

The metabolism of omeprazole in patients with liver dysfunction is impaired, resulting in an increased AUC. Omeprazole has not shown any tendency to accumulate with once daily dosing.

Renal impairment

The pharmacokinetics of omeprazole, including systemic bioavailability and elimination rate, are unchanged in patients with reduced renal function.

Elderly

The metabolism rate of omeprazole is somewhat reduced in elderly subjects (75-79 years of age).

Paediatric population

During treatment with the recommended doses to children from the age of 1 year, similar plasma concentrations were obtained as compared to adults. In children younger than 6 months, clearance of omeprazole is low due to low capacity to meta bolise omeprazole.

5.3 PRECLINICAL SAFETY DATA

Gastric ECL-cell hyperplasia and carcinoids, have been observed in life-long studies in rats treated with omeprazole. These changes are the result of sustained hypergastrinaemia secondary to acid inhibition.

Similar findings have been made after treatment with H2-receptor antagonists, proton pump inhibitors and after partial fundectomy. Thus, these changes are not from a direct effect of any individual active substance.

6. PHARMACEUTICAL PARTICULARS

6.1 List of excipients

None

6.2 Incompatibilities

Not applicable.

6.3 Shelf life

3 years.

6.4 Special precautions for storage

Store in cool dry place. Protect from light.

6.5 Nature and contents of container

Alu-Alu Strip pack of 10x10 Capsules packed in carton along with Pack Insert

6.6 Instructions for use and handling

No special requirements.

7. MARKETING AUTHORISATION HOLDER

Milan Laboratories (India) Pvt. Ltd.

303 & 304, Odyssey IT park, Road No. 9, Opposite MIDC Office, Wagle Estate, Thane -400604 India

E-mail: <u>info@milanlabs.com</u>

8. NUMBER(S) IN THE NATIONAL REGISTER OF FINISHED PHARMACEUTICAL PRODUCTS

08508/07920/VAR/2022

9. DATE OF FIRST AUTHORISATION/RENEWAL OF THE AUTHORISATION

23.03.2023

10. DATE OF REVISION OF THE TEXT

July 2023