SUMMARY OF PRODUCT CHARACTERISTICS

SUMMARY OF PRODUCT CHARACTERISTICS

1. NAME OF MEDICINAL PRODUCT

Trade Name: NEXPRO-20 & NEXPRO-40

Generic Name:

Esomeprazole Magnesium Gastro-Resistant Tablets 20 mg Esomeprazole Magnesium Gastro-Resistant Tablets 40 mg

2. QUALITATIVE AND QUANTITATIVE COMPOSITION NEXPRO – 20

Each gastro-resistant tablet contains:

Esomeprazole magnesium equivalent to Esomeprazole20 mg Colours: Red oxide of Iron and Titanium Dioxide.

NEXPRO - 40

Each gastro-resistant tablet contains:

Esomeprazole magnesium equivalent to Esomeprazole40 mg Colours: Red oxide of Iron and Titanium Dioxide.

3. PHARMACEUTICAL FORM

Tablet

4. CLINICAL PARTICULARS

4.1 Therapeutic indications

Nexpro is indicated for the treatment of GERD, gastric and duodenal ulcers, Zollinger-Ellision syndrome.

4.2 Dosage and administration

Adults

Gastroesophageal Reflux Disease (GERD)

- Treatment of erosive reflux esophagitis

40 mg once daily for 4 weeks.

An additional 4 weeks treatment is recommended for patients in whom esophagitis has not healed or who have persistent symptoms.

Prolonged treatment after i.v. induced prevention of rebleeding of peptic ulcers.

40 mg once daily for 4 weeks after i.v. induced prevention of rebleeding of peptic ulcers.

Treatment of Zollinger Ellison Syndrome

The recommended initial dosage is Esomeprazole 40 mg twice daily. The dosage should then be individually adjusted and treatment continued as long as clinically indicated. Based on the clinical data available, the majority of patients can be controlled on doses between 80 to 160 mg esomeprazole daily. With doses above 80 mg daily, the dose should be divided and given twice daily.

Special Populations

Renal impairment

Dose adjustment is not required in patients with impaired renal function. Due to limited experience in patients with severe renal insufficiency, such patients should be treated with caution.

Hepatic impairment

Dose adjustment is not required in patients with mild to moderate liver impairment. For patients with severe liver impairment, a maximum dose of 20 mg Esomeprazole should not be exceeded.

Elderly

Dose adjustment is not required in the elderly.

Paediatric population

Adolescents from the age of 12 years

Gastroesophageal Reflux Disease (GERD)

- treatment of erosive reflux esophagitis

40 mg once daily for 4 weeks.

An additional 4 weeks treatment is recommended for patients in whom esophagitis has not healed or who have persistent symptoms.

Children below the age of 12 years

For posology in patients aged 1 to 11 reference is made to the Esomeprazole sachet SmPC.

Method of administration

The tablets should be swallowed whole with liquid. The tablets should not be chewed or crushed. For patients who have difficulty in swallowing, the tablets can also be dispersed in half a glass of non-carbonated water. No other liquids should be used as the enteric coating may be dissolved. Stir until the tablets disintegrate and drink the liquid with the pellets immediately or within 30 minutes. Rinse the glass with half a glass of water and drink. The pellets must

not be chewed or crushed.

For patients who cannot swallow, the tablets can be dispersed in non-carbonated water and administered through a gastric tube. It is important that the appropriateness of the selected syringe and tube is carefully tested.

4.3. Contraindications

Hypersensitivity to the active substance, to substituted benzimidazoles or to any of the excipients of the product.

Esomeprazole should not be used concomitantly with nelfinavir

4.4. Warnings

In the presence of any alarm symptom (e.g. significant unintentional weight loss, recurrent vomiting, dysphagia, haematemesis or melaena) and when gastric ulcer is suspected or present, malignancy should be excluded, as treatment with Esomeprazole may alleviate symptoms and delay diagnosis.

Long term use

Patients on long-term treatment (particularly those treated for more than a year) should be kept under regular surveillance.

On demand treatment

Patients on on-demand treatment should be instructed to contact their physician if their symptoms change in character.

Helicobacter pylori eradication

When prescribing esomeprazole for eradication of *Helicobacter pylori*, possible drug interactions for all components in the triple therapy should be considered. Clarithromycin is a potent inhibitor of CYP3A4 and hence contraindications and interactions for clarithromycin should be considered when the triple therapy is used in patients concurrently taking other drugs metabolised via CYP3A4 such as cisapride.

Gastrointestinal infections

Treatment with proton pump inhibitors may lead to slightly increased risk of gastrointestinal infections such as *Salmonella* and *Campylobacter*

Absorption of vitamin B12

Esomeprazole, as all acid-blocking medicines, may reduce the absorption of vitamin B12 (cyanocobalamin) due to hypo- or achlorhydria. This should be considered in patients with reduced body stores or risk factors for reduced vitamin B12 absorption on long-term therapy.

Hypomagnesaemia

Severe hypomagnesaemia has been reported in patients treated with proton pump inhibitors (PPIs) like esomeprazole for at least three months, and in most cases for a year. Serious manifestations of hypomagnesaemia such as fatigue, tetany, delirium, convulsions, dizziness and ventricular arrhythmia can occur but they may begin insidiously and be overlooked. In most affected patients, hypomagnesaemia improved after magnesium replacement and discontinuation of the PPI.

For patients expected to be on prolonged treatment or who take PPIs with digoxin or drugs that may cause hypomagnesaemia (e.g. diuretics), healthcare professionals should consider measuring magnesium levels before starting PPI treatment and periodically during treatment.

Risk of fracture

Proton pump inhibitors, especially if used in high doses and over long durations (>1 year), may modestly increase the risk of hip, wrist and spine fracture, predominantly in the elderly or in presence of other recognised risk factors. Observational studies suggest that proton pump inhibitors may increase the overall risk of fracture by 10-40%.

Some of this increase may be due to other risk factors. Patients at risk of osteoporosis should receive care according to current clinical guidelines and they should have an adequate intake of vitamin D and calcium.

Subacute cutaneous lupus erythematosus (SCLE)

Proton pump inhibitors are associated with very infrequent cases of SCLE. If lesions occur, especially in sun-exposed areas of the skin, and if accompanied by arthralgia, the patient should seek medical help promptly and the health care professional should consider stopping Esomeprazole. SCLE after previous treatment with a proton pump inhibitor may increase the risk of SCLE with other proton pump inhibitors.

Combination with other medicinal products

Co-administration of esomeprazole with atazanavir is not recommended. If the combination of atazanavir with a proton pump inhibitor is judged unavoidable, close clinical monitoring is recommended in combination with an increase in the dose of atazanavir to 400 mg with 100 mg of ritonavir; esomeprazole 20 mg should not be exceeded.

Esomeprazole is a CYP2C19 inhibitor. When starting or ending treatment with esomeprazole, the potential for interactions with drugs metabolised through CYP2C19 should be considered. An interaction is observed between clopidogrel and esomeprazole. The clinical relevance of this interaction is uncertain. As a precaution, concomitant use of esomeprazole and clopidogrel should be discouraged.

When prescribing esomeprazole for on demand therapy, the implications for interactions with other pharmaceuticals, due to fluctuating plasma concentrations of esomeprazole should be considered.

Interference with laboratory tests

Increased Chromogranin A (CgA) level may interfere with investigations for neuroendocrine tumours. To avoid this interference, esomeprazole treatment should be stopped for at least 5 days before CgA measurements. If CgA and gastrin levels have not returned to reference range after initial measurement, measurements should be repeated 14 days after cessation of proton pump inhibitor treatment.

4.5. Interactions with other medicinal products and other forms of interactions

Effects of esomeprazole on the pharmacokinetics of other drugs

Protease inhibitors

Omeprazole has been reported to interact with some protease inhibitors. The clinical importance and the mechanisms behind these reported interactions are not always known. Increased gastric pH during omeprazole treatment may change the absorption of the protease inhibitors. Other possible interaction mechanisms are via inhibition of CYP2C19.

For atazanavir and nelfinavir, decreased serum levels have been reported when given together with omeprazole and concomitant administration is not recommended. Co-administration of omeprazole (40 mg once daily) with atazanavir 300 mg/ritonavir 100 mg to healthy volunteers resulted in a substantial reduction in atazanavir exposure (approximately 75% decrease in AUC, C_{max} and C_{min}). Increasing the atazanavir dose to 400 mg did not compensate for the impact of omeprazole on atazanavir exposure. The co-administration of omeprazole (20 mg qd) with atazanavir 400 mg/ritonavir 100 mg to healthy volunteers resulted in a decrease of approximately 30% in the atazanavir exposure as compared with the exposure observed with atazanavir 300 mg/ritonavir 100 mg qd without omeprazole 20 mg qd. Co-administration of omeprazole (40 mg qd) reduced mean nelfinavir AUC, C_{max} and C_{min} by 36–39 % and mean AUC, C_{max} and C_{min} for the pharmacologically active metabolite M8 was reduced by 75-92%. Due to the similar pharmacodynamic effects and pharmacokinetic properties of omeprazole and esomeprazole, concomitant administration with esomeprazole and atazanavir is not recommended and concomitant administration with esomeprazole and nelfinavir is contraindicated.

For saquinavir (with concomitant ritonavir), increased serum levels (80-100%) have been reported during concomitant omeprazole treatment (40 mg qd). Treatment with omeprazole 20 mg qd had no effect on the exposure of darunavir (with concomitant ritonavir) and amprenavir (with concomitant ritonavir). Treatment with esomeprazole 20 mg qd had no effect on the exposure of amprenavir (with and without concomitant ritonavir). Treatment with omeprazole 40 mg qd had no effect on the exposure of lopinavir (with concomitant ritonavir).

Methotrexate

When given together with PPIs, methotrexate levels have been reported to increase in some patients. In high-dose methotrexate administration a temporary withdrawal of esomeprazole may need to be considered.

Tacrolimus

Concomitant administration of esomeprazole has been reported to increase the serum levels of tacrolimus. A reinforced monitoring of tacrolimus concentrations as well as renal function (creatinine clearance) should be performed, and dosage of tacrolimus adjusted if needed.

Medicinal products with pH dependent absorption

Gastric acid suppression during treatment with esomeprazole and other PPIs might decrease or increase the absorption of medicinal products with a gastric pH dependent absorption. As with other medicinal products that decrease intragastric acidity, the absorption of medicinal products such as ketoconazole, itraconazole and erlotinib can decrease and the absorption of digoxin can increase during treatment with esomeprazole. Concomitant treatment with omeprazole (20 mg daily) and digoxin in healthy subjects increased the bioavailability of digoxin by 10% (up to 30% in two out of ten subjects). Digoxin toxicity has been rarely reported. However, caution should be exercised when esomeprazole is given at high doses in elderly patients. Therapeutic drug monitoring of digoxin should then be reinforced.

Medicinal products metabolised by CYP2C19

Esomeprazole inhibits CYP2C19, the major esomeprazole-metabolising enzyme. Thus, when esomeprazole is combined with drugs metabolised by CYP2C19, such as diazepam, citalopram, imipramine, clomipramine, phenytoin etc., the plasma concentrations of these drugs may be increased and a dose reduction could be needed. This should be considered especially when prescribing esomeprazole for on-demand therapy.

<u>Diazepam</u>

Concomitant administration of 30 mg esomeprazole resulted in a 45% decrease in clearance of the CYP2C19 substrate diazepam.

Phenytoin

Concomitant administration of 40 mg esomeprazole resulted in a 13% increase in trough plasma levels of phenytoin in epileptic patients. It is recommended to monitor the plasma concentrations of phenytoin when treatment with esomeprazole is introduced or withdrawn.

Voriconazole

Omeprazole (40 mg once daily) increased voriconazole (a CYP2C19 substrate) C_{max} and AUC τ by 15% and 41%, respectively.

Cilostazol

Omeprazole as well as esomeprazole act as inhibitors of CYP2C19. Omeprazole, given in doses of 40 mg to healthy subjects in a cross-over study, increased

C_{max} and AUC for cilostazol by 18% and 26% respectively, and one of its active metabolites by 29% and 69% respectively.

Cisapride

In healthy volunteers, concomitant administration of 40 mg esomeprazole resulted in a 32% increase in area under the plasma concentration-time curve (AUC) and a 31% prolongation of elimination half-life ($t_{1/2}$) but no significant increase in peak plasma levels of cisapride. The slightly prolonged QTc interval observed after administration of cisapride alone, was not further prolonged when cisapride was given in combination with esomeprazole.

Warfarin

Concomitant administration of 40 mg esomeprazole to warfarin-treated patients in a clinical trial showed that coagulation times were within the accepted range. However, post-marketing, a few isolated cases of elevated INR of clinical significance have been reported during concomitant treatment. Monitoring is recommended when initiating and ending concomitant esomeprazole treatment during treatment with warfarin or other coumarine derivatives.

Clopidogrel

Results from studies in healthy subjects have shown a pharmacokinetic (PK)/pharmacodynamic (PD) interaction between clopidogrel (300 mg loading dose/75 mg daily maintenance dose) and esomeprazole (40 mg p.o.daily) resulting in decreased exposure to the active metabolite of clopidogrel by an average of 40% and resulting in decreased maximum inhibition of (ADP induced) platelet aggregation by an average of 14%.

When clopidogrel was given together with a fixed dose combination of esomeprazole 20 mg + ASA 81 mg compared to clopidogrel alone in a study in healthy subjects there was a decreased exposure by almost 40% of the active metabolite of clopidogrel. However, the maximum levels of inhibition of (ADP induced) platelet aggregation in these subjects were the same in the clopidogrel and the clopidogrel + the combined (esomeprazole + ASA) product groups.

Inconsistent data on the clinical implications of a PK/PD interaction of esomeprazole in terms of major cardiovascular events have been reported from both observational and clinical studies. As a precaution concomitant use of clopidogrel should be discouraged.

Investigated medicinal products with no clinically relevant interaction

Amoxicillin and quinidine

Esomeprazole has been shown to have no clinically relevant effects on the pharmacokinetics of amoxicillin or quinidine.

Naproxen or rofecoxib

Studies evaluating concomitant administration of esomeprazole and either naproxen or rofecoxib did not identify any clinically relevant pharmacokinetic interactions during short-term studies.

Effects of other medicinal products on the pharmacokinetics of esomeprazole

Medicinal products which inhibit CYP2C19 and/or CYP3A4

Esomeprazole is metabolised by CYP2C19 and CYP3A4. Concomitant administration of esomeprazole and a CYP3A4 inhibitor, clarithromycin (500 mg b.i.d.), resulted in a doubling of the exposure (AUC) to esomeprazole. Concomitant administration of esomeprazole and a combined inhibitor of CYP2C19 and CYP3A4 may result in more than doubling of the esomeprazole exposure. The CYP2C19 and CYP3A4 inhibitor voriconazole increased omeprazole AUCtby 280%. A dose adjustment of esomeprazole is not regularly required in either of these situations. However, dose adjustment should be considered in patients with severe hepatic impairment and if long-term treatment is indicated.

Medicinal products which induce CYP2C19 and/or CYP3A4

Drugs known to induce CYP2C19 or CYP3A4 or both (such as rifampicin and St. John's wort) may lead to decreased esomeprazole serum levels by increasing the esomeprazole metabolism.

Paediatric population

Interaction studies have only been performed in adults.

4.6 Use in Pregnancy, lactation

Pregnancy

Clinical data on exposed pregnancies with Esomeprazole are insufficient. With the racemic mixture omeprazole data on a larger number of exposed pregnancies stemmed from epidemiological studies indicate no malformative nor foetotoxic effects.

Animal studies with esomeprazole do not indicate direct or indirect harmful effects with respect to embryonal/foetal development. Animal studies with the racemic mixture do not indicate direct or indirect harmful effects with respect to pregnancy, parturition or postnatal development. Caution should be exercised when prescribing to pregnant women.

A moderate amount of data on pregnant women (between 300-1000 pregnancy outcomes) indicates no malformative or foeto/neonatal toxicity of esomeprazole. Animal studies do not indicate direct or indirect harmful effects with respect to reproductive toxicity.

Breast-feeding

It is not known whether esomeprazole is excreted in human breast milk. There is insufficient information on the effects of esomeprazole in newborns/infants. Esomeprazole should not be used during breast-feeding.

Fertility

Animal studies with the racemic mixture omeprazole, given by oral administration do not indicate effects with respect to fertility.

4.7. Adverse reactions

Summary of the safety profile

Headache, abdominal pain, diarrhoea and nausea are among those adverse reactions that have been most commonly reported in clinical trials (and also from post-marketing use). In addition, the safety profile is similar for different formulations, treatment indications, age groups and patient populations. No dose-related adverse reactions have been identified.

Tabulated list of adverse reactions

The following adverse drug reactions have been identified or suspected in the clinical trials programme for esomeprazole and post-marketing. None was found to be dose-related. The reactions are classified according to frequency very common $\geq 1/10$; common $\geq 1/100$ to <1/10; uncommon $\geq 1/1000$ to <1/100; rare $\geq 1/10000$ to <1/1000; very rare <1/10000; not known (cannot be estimated from the available data).

System Organ Class	Frequency	Undesirable Effect
Blood and lymphatic system	Rare	Leukopenia, thrombocytopenia
disorders	Very rare	Agranulocytosis, pancytopenia
Immune system disorders		Hypersensitivity reactions e.g.
	Rare	fever, angioedema and
		anaphylactic reaction/shock
Metabolism and nutrition disorders	Uncommon	Peripheral oedema
	Rare	Hyponatraemia
	Not known	Hypomagnesaemia; severe
		hypomagnesaemia can correlate
		with hypocalcaemia.
		Hypomagnesaemia may also be
		associated with hypokalaemia.
Psychiatric disorders	Uncommon	Insomnia
	Rare	Agitation, confusion, depression
	Very rare	Aggression, hallucinations
Nervous system disorders	Common	Headache
	Uncommon	Dizziness, paraesthesia,
		somnolence
	Rare	Taste disturbance
Eye disorders	Rare	Blurred vision
Ear and labyrinth disorders	Uncommon	Vertigo
Respiratory, thoracic and	Rare	Bronchospasm
mediastinal disorders		
Gastrointestinal disorders	Common	Abdominal pain, constipation,
		diarrhoea, flatulence,
		nausea/vomiting
	Uncommon	Dry mouth
	Rare	Stomatitis, gastrointestinal
		candidiasis

	Not known	Microscopic colitis
Hepatobiliary disorders	Uncommon	Increased liver enzymes
	Rare	Hepatitis with or without jaundice
	Very rare	Hepatic failure, encephalopathy in patients with pre-existing liver disease
Skin and subcutaneous tissue disorders	Uncommon	Dermatitis, pruritus, rash, urticaria
	Rare	Alopecia, photosensitivity
	Very rare	Erythema multiforme, Stevens- Johnson syndrome, toxic epidermal necrolysis (TEN)
	Not known	Subacute cutaneous lupus erythematosus
Musculoskeletal and connective tissue disorders	Uncommon	Fracture of the hip, wrist or spine
	Rare	Arthralgia, myalgia
	Very rare	Muscular weakness
Renal and urinary disorders	Very rare	Interstitial nephritis; in some patients renal failure has been reported concomitantly.
Reproductive system and breast disorders	Very rare	Gynaecomastia
General disorders and administration site conditions	Rare	Malaise, increased sweating

4.8. Overdose

There is very limited experience to date with deliberate overdose. The symptoms described in connection with 280 mg were gastrointestinal symptoms and weakness.

Single doses of 80 mg esomeprazole were uneventful. No specific antidote is known. Esomeprazole is extensively plasma protein bound and is therefore not readily dialyzable. As in any case of overdose, treatment should be symptomatic and general supportive measures should be utilised.

5. Pharmacological properties

5.1 Pharmacodynamic Properties

Esomeprazole was developed as an isomer from omeprazole, the first PPI, but exhibits a different metabolic profile. Esomeprazole is a weak base and is concentrated and converted to the active form in the highly acidic of the parietal cell. Like environment of the secretory canaliculi otherdrugs in its class, esomeprazole suppresses the final step in gastric acid production by binding to two sites of the (H⁺, K⁺)-ATPase enzyme system at the secretory surface of the gastric parietal cell. This effect is doserelated and leads to inhibition of both basal and stimulated gastric acid secretion irrespective of the stimulus. The binding to the (H⁺, K⁺)-ATPase results in a duration of antisecretory effect that persists for longer than 24 hours.

Esomeprazole, the S-isomer of omeprazole, is the first proton pump inhibitor synthesized as an optical isomer to become available for clinical use. Esomeprazole is optically stable in humans with negligible inversion the R-isomer. Esomeprazole significantly has higher oral bioavailability than omeprazole, resulting in greater acid suppression. clinical studies, 4 weeks' treatment with 40mg esomeprazole demonstrated greater healing of all grades of erosive oesophagitis, c o m p a r e d with 20mg omeprazole (76-82% versus 69-71%) and higher rates of symptom resolution (65-68% versus 58-61%). Furthermore, esomeprazole maintained healing rates of up to 90% over 6 months in erosive esophagitis. Comparisons with other proton pump inhibitors in esophagitis are, as yet, unavailable. In patients with endoscopy-negative gastro-esophageal reflux disease (GERD), ondemand therapy with esomeprazole 20 mg has been shown to be efficacious compared with placebo, and is well tolerated; however, comparisons with other proton pump inhibitors have not been performed.

Long- term use of esomeprazole for up to 12 months in patients with GERD have not raised any significant safety concerns with respect to the development of atrophic gastritis or clinically relevant changes in enterochromaffin-like cells.

5.2. Pharmacokinetic properties

<u>Absorption</u>

Esomeprazole is acid labile and is administered orally as enteric-coated granules. *In vivo* conversion to the *R*-isomer is negligible. Absorption of esomeprazole is rapid, with peak plasma levels occurring approximately 1-2 hours after dose. The absolute bioavailability is 64% after a single dose of 40 mg and increases to 89% after repeated once daily administration. For 20 mg esomeprazole the corresponding values are 50% and 68%, respectively.

Food intake both delays and decreases the absorption of esomeprazole although this has no significant influence on the effect of esomeprazole on intragastric acidity.

Distribution

The apparent volume of distribution at steady state in healthy subjects is approximately 0.22 l/kg body weight. Esomeprazole is 97% plasma protein bound.

Biotransformation

Esomeprazole is completely metabolised by the cytochrome P450 system (CYP). The major part of the metabolism of esomeprazole is dependent on the polymorphic CYP2C19, responsible for the formation of the hydroxy- and desmethyl metabolites of esomeprazole. The remaining part is dependent on another specific isoform, CYP3A4, responsible for the formation of esomeprazole sulphone, the main metabolite in plasma.

Elimination

The parameters below reflect mainly the pharmacokinetics in individuals with a functional CYP2C19 enzyme, extensive metabolisers.

Total plasma clearance is about 17 l/h after a single dose and about 9 l/h after repeated administration.

The plasma elimination half-life is about 1.3 hours after repeated once daily dosing. Esomeprazole is completely eliminated from plasma between doses with no tendency for accumulation during once-daily administration.

The major metabolites of esomeprazole have no effect on gastric acid secretion. Almost 80% of an oral dose of esomeprazole is excreted as metabolites in the urine, the remainder in the faeces. Less than 1% of the parent drug is found in urine.

Linearity/non-linearity

The pharmacokinetics of esomeprazole has been studied in doses up to 40 mg b.i.d. The area under the plasma concentration-time curve increases with repeated administration of esomeprazole. This increase is dose-dependent and results in a more than dose proportional increase in AUC after repeated administration. This time- and dose-dependency is due to a decrease of first pass metabolism and systemic clearance probably caused by an inhibition of the CYP2C19 enzyme by esomeprazole and/or its sulphone metabolite.

Special patient populations

Poor metabolisers

Approximately 2.9 ±1.5% of the population lack a functional CYP2C19 enzyme and are called poor metabolisers. In these individuals the metabolism of esomeprazole is probably mainly catalysed by CYP3A4. After repeated once daily administration of 40 mg esomeprazole, the mean area under the plasma concentration-time curve was approximately 100% higher in poor metabolisers than in subjects having a functional CYP2C19 enzyme (extensive metabolisers). Mean peak plasma concentrations were increased by about 60%. These findings have no implications for the posology of esomeprazole.

Gender

Following a single dose of 40 mg esomeprazole the mean area under the plasma concentration-time curve is approximately 30% higher in females than in males. No gender difference is seen after repeated once daily administration. These findings have no implications for the posology of esomeprazole.

Hepatic impairment

The metabolism of esomeprazole in patients with mild to moderate liver dysfunction may be impaired. The metabolic rate is decreased in patients with severe liver dysfunction resulting in a doubling of the area under the plasma concentration-time curve of esomeprazole. Therefore, a maximum of 20 mg should not be exceeded in patients with severe dysfunction. Esomeprazole or its major metabolites do not show any tendency to accumulate with once daily dosing.

Renal impairment

No studies have been performed in patients with decreased renal function. Since the kidney is responsible for the excretion of the metabolites of esomeprazole but not for the elimination of the parent compound, the metabolism of esomeprazole is not expected to be changed in patients with impaired renal function.

Elderly

The metabolism of esomeprazole is not significantly changed in elderly subjects (71-80 years of age).

Paediatric population

Adolescents 12-18 years:

Following repeated dose administration of 20 mg and 40 mg esomeprazole, the total exposure (AUC) and the time to reach maximum plasma concentration (t_{max}) in 12 to 18 year-olds was similar to that in adults for both esomeprazole doses.

5.3 Preclinical safety data

Non-clinical data reveal no special hazard for humans based on conventional studies of safety pharmacology, repeated dose toxicity, genotoxicity, carcinogenic potential, toxicity to reproduction and development. Adverse reactions not observed in clinical studies, but seen in animals at exposure levels similar to clinical exposure levels and with possible relevance to clinical use were as follows:

Carcinogenicity studies in the rat with the racemic mixture have shown gastric ECL-cell hyperplasia and carcinoids.

These gastric effects in the rat are the result of sustained, pronounced hypergastrinaemia secondary to reduced production of gastric acid and are observed after long-term treatment in the rat with inhibitors of gastric acid secretion.

5.3.1 Teratogenicity

Teratology studies have been performed in rats at oral doses up to 280 mg/kg/day (about 57 times the human dose on a body surface area basis) and in rabbits at oral doses up to 86 mg/kg/day (about 35 times the human dose on a body surface area basis) and have revealed no evidence of impaired fertility or harm to the fetus due to Esomeprazole.

5.3.2 Mutagenicity

Esomeprazole was negative in the Ames mutation test, in the *in vivo* rat bone marrow cell chromosome aberration test, and the *in vivo* mouse micronucleus test. Esomeprazole, however, was positive in the *in vitro* human lymphocyte chromosome aberration test. Omeprazole was positive in the *in vitro* human lymphocyte chromosome aberration test, the *in vivo* mouse bone marrow cell chromosome aberration test, and the *in vivo* mouse micronucleus test.

6. Pharmaceutical particulars

6.1 List of Excipients

Sugar Spheres (Non Pareil seeds)
Ethylcellulose (10cps)
Magnesium Stearate
Methanol
Methylene Chloride
Povidone (Plasdone K-90)
Light Magnesium Oxide
Methacrylic acid- ethyl acrylate copolymer (1:1) dispersion 30 percent
Diethyl phthalate
Talc (purified)
Silicified microcrystalline cellulose
Starlac
Copovidone (K-28)
Macrogol 8000
Crospovidone (Kollidone CL)
Silica, colloidal anhydrous
Hypromellose 15cps
Titanium dioxide (E171)
Ferric oxide red (E172)
Purified water

6.2 Incompatibilities

None

6.3 Shelf – life

36 months from the date of manufacturing.

6.4 Special precautions for storage

Store below 30°C, Protect from light and moisture

6.5 Nature and contents of container

Nexpro-20 tablets are packed in Alu-Alu blister pack of 15 tablets.

7. Marketing Authorization Holder

Torrent Pharmaceuticals

Ltd., "Torrent House",

Off Ashram Road,

Ahmedabad - 380 009

INDIA.

Tel. No. : 91-79-6583060 / 6585090

Fax. No. : 91-79-6582100

8. Marketing Authorization Number

Not Applicable

9. Date of first authorization/renewal of the authorization

Not Applicable

10. Date of revision of the text

Not Applicable